ON THE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS OF SUCCESSIVE APPRONIMATIONS.

By PRESTON A. LAMBERT.
(Read April 20, 1911.)

The object of this paper is to apply to the solution of linear differ-
ential equations, both ordinary and partial, the method of expansion
into series used in the solution of algebraic equations in the papers
read by the author before the Philosophical Society in April, 1903,
and in April, 1908.

Let the given differential equation be

d}/ 1{2]’ ay

dx’ dx?

The method of solution consists of the followirg steps:
(@) Break up the left-hand member of the differential equation

nto two parts,
d_)/ dry a")
fl( Y dr dat ""d.w)

y; dy d% dy

AN, ’ ry T Ty n )

2 D dr da? ax"

such that the first part equated to zero can be integrated by some

known method, and multiply the second part by a parameter S, inde-
pendent of 1 and x.  Replace the given equation by

a/}' d*y z’" 11’1' d? i d"y

(b) Assume that

and

(3) M=o+ 35 + .57 LSt v St - -

makes cquation (2) an identity.

(&)
~1
[T
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(¢) In this identity arranged according to the ascending powers
of § equate to zero the coefficients of the different powers of S.

(d) Solve the differential equations thus obtained in regular order
for ¥o. 31, 3'as Yoo Yo+ 0

(e) Substitute these valuesin (3)and make S unity. The result-
ing value of v, if it contains a finite number of terms or if it is a
uniformly convergent infirite series, is a solution of the given dif-
ferential equation.!

The method of solution of linear differential equations as here
outlined does not seem to occur in mathematical literature except as
developed by the author.

The method will be exemplified by applyving it to two differential
equations, important in mathematical physics—DBessel's equation, a
second order ordinary differential equation, and Fourier's equation
for the flow of heat, a second order partial differential equation.

Jessel’s equation is
ay oA,
aF Tyt E =y =o

2

Replace Dessel's equation by

(s 5 + v g =) + S5y =
and assume that

Y= .\'15 ol .\'25: + 355% 4 .\'45* 9P °oc
makes the latter equation an identity.
When arranged in ascending powers of S this identity is

L4, _za’y A, 8P+ .. =o.
T | T g P e da?
dy, Ay, dy,
T dv + dx " dx
> 5 — iy,
+r,

* This method gives a formal solution of non-linear differential equations,
but up to the present time the author has been unable to test the resulting
series for convergency.
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Equating to zero the coefficients of the powers of S in this identity,
there result the following differential equations for the determina-
tion of Vo, ¥y, Vo Va» ©**

2 T, ar, 2
B i + X P nwy,=o,

dy dy
2 - {'521— + x a’Jt] — 7%y, + 2%, =0,

d%y. dy,
2@y W 2 2,
Yge T gy T TN

The equation in v, is a homogeneous linear differential equation
and its solution is

Vo =" 4 Ban,

Substituting this value of v, the equation for determining y,
becomes

2 A’y dy,

x

i T

— iy = — Ayt — Byt

This equation becomes exact when multiplied by a7, The
resulting equation integrated gives a linear equation of the first order,
the solution of which 1s

= AIH-Q- 2 B,t'_"+ 2

M= ey T2 — 1y

Substituting this value of y, in the equation for determining vy,
and proceeding in the same manner

At Byt
BT e 2) T 22— Y= 2)

In like manner

— AL Br—nt6

Te= 3t ) ) 3) T 23— (e — 2 — 3)’

and so on.
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Substituting these values of A, ¥, Vo, Ay, -+ i
Y=y, + 35+ 35"+ AV SRR SRR

and making S unity,

L 1t I _,ti
y=ar I—;z+71 ;”+(;z+ 1) (7 + 2) 2* 2!

I 28
T (e 4 1) 4 2)(n + 3) 25 3'+

1 &t I at
+ By [I P Py + (

"—1 n— 1)(n — 2) 2*.2!

1 7
o (n— 1)(n — 2)(n — 3) 2% 3! L ]
When # is not an integer the terms of both series in this value
of y continue indefinitely according to the law of formation which
inspection makes evident, both series are uniformly convergent ex-
cept when w=o0, and both series are solutions of the given differ-
ential equation.
When n is a negative integer the law of formation of the terms
of the first series changes after the (u)th term and when # is a
positive integer the law of formation of the terms of the second
series changes after the (n)th term. The second case will be con-
sidered.
When 1 is a positive integer the (72)th term of the second series is

Bam?
1 = 250 — 1)l (e — 1) I

Substituting this value of v,_, in the differential equation for
determining 3,

ly" z' >
* dr2 + l - ” 1' + x -rn—l i

and solving for v, by the method used in solvizg for y,, v, v, « -

B . at
y : v log x— " |,
In= 22 — 0! 21

In determining Vi.y. Vu_o. Vuos - -+, the second term in the bracket
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gives the terms of the first series in the value of ¥ muitiplied by a
constant. This new series is combined with the first series in the
value of y.

The first term in the bracket gives

] i r"*+log x 2t I
P = gt i T ek T e U e )
_ = 4 a"log x
Y R T P e " )

’
J n+2
1.u+l

I 1 1
= 22 I)(/1+2)<I T2t + 1 Y +2):|'

The solution of Bessel’s differential equation when u is a positive
integer is therefore

A TR 1 7 at
=A==, i 22+(u + 1) (2 + 2) 2421
I a6
~ (2t 1)(2 + 2)(n SR L SN
B 1 a2t 1 at
T B [I tu_1227 (n — 1)(n — 2) 2*. 2!
1_‘_’n~‘:
LI P Fy sy ¥
B log x 1At 1 B
B 22"—11é!(12 7—:-717)7! 1= + 1 22+(u + 1) (7 + 2) 22!

I L
T (4 D)+ 2)(n + 3) 2° 3! N :I

bat I I at
—— - 1 : —
22— 1) w41 + w4 1) 2%
I I I I at +
—— — |1 500 ||o
(2 4+ 1) + 2) +2+;z+1+11+2 2t.2!
This is also the solution of the differential equation when n is a
negative integer.
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279
Fourier's partial differential equation for the linear flow of
heat is
EV 6"V
o ox?

Replace Fourier's equation by

and assume that

V="+ TS+ V.54 1V,5 4.
makes the latter equation an identity.
When arranged in ascending powers of S this identity is
ov,| on or,

| o . OV, 1S+
az1+6/ P+ ot ,5+ ot

.= o.
|
ot V o V
_J& © S f
Equating to zero the coefficient of the powers of S in this identity,

there result the following partial differential equations for the deter-
mination of I7,, I",, 7, V, -

-
'/ 2
Mo N_ PN _
ot ’ ot ox*
T _ kN, G_goh_
ot ox? i ot ox?

These partial differential equations solved in regular order give

Vi=¢(v), Vi=¢"(x)(K?), V,=¢"(x) %@2

(K2
V,= ¢\x() 3”..._
Substituting these values of I, V', I"., I,

. in the assumed
value of J” and finally making § umty. thcre result@

() V= )+ $x&D) + 856 G 4 6min O 4
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which is a solution of Fourier's equation for all values of ¢(r) for
which }7 either contains a finite number of terms or is an infinite
series uniformly convergent both in .v and in t.

The following table shows several values of ¢(.r) and the cor-
responding solutions of Fourier's equation,

I (1) ¢(x)= 4, V= 4,
(2) $(x) = A, = Az,
(3) ¢(x) = Az, I'= A(2* + 2K%),
(4) ¢(x) = A sin (nx), I7= Ae7™k sin (nx),
(5) ¢(x) = 4 cos (nx), V= Ae™* cos (nx),
(6) $(x) = Ae™, V= Agmest
(7) ¢(v) = Ade™, V/'= Aeretrekt
(8) ¢(¥) = Ae™* sin (nx), V= Ae*sin (nx + 214°A%).

It will be noticed that in these solutions ¢ (.r) is the value of I”
when t==o0, that is " =¢ (") is the initial heat distribution.

It will also be noticed that in all these results + may be replaced
by x4 a. This statement is true of the results in the several fol-
lowing tables.

If Fourier's differential equation is replaced by

o >
S= =K 5=
ot o
and the assumption made that
V=r,+1I"S+71.5+1,54+. ..

makes this equation an identity, this identity arranged in ascending
powers of § is

ano >V ’a‘:Vz‘ , 62[/;’53_{_...50_
a ox? o 46 orx? Sant ox? IS + K"a}? |
ov, oy, v,
ot | T or oo

Equating to zero the coefficients of the powers of S in this
identity,
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v, oV, 1 8l oV, 1 9l
== 0 ¥ — — = 0 e — 55 a, =0, <.
ox? oot K ot ’ooxt K ot :
Solving these partial differential equations in regular order for
I, 17, Vs, V,, -+ -, substituting these values in the assumed expres-
sion for V/, and finally making S unity, the result

P= 80+ 5 #0514 a0+

(%) P | N r o, ot
+ (Z) +[-\’76(/) 2! +K79 (“)Z‘Jf‘

is a solution of Fourier's differential equation for all values of
¢(t) and 6(t) for which I either contains a finite number of terms
or is an infinite series uniformly convergent both for a and for ¢

Solutions of the differential equation when ¢(t) =o0 correspond-
ing to several values of #(t) are as follows—

11 ¢(?) =o,
(1) 8() = 4, V= A,
2‘2
- - e
(2) 0(2) = A¢, I_A<1+2K>,
= AP _afp .
(3) 6(z) = A7, V_A<z + 0t 3.41{2).
= A# 7 — At _,Xi — !
) ela)= A V= At [[ + 3 1(2K7%)  4!(2Ky)
327
. +5!(:A’f)3_"']’
. Ap Kt
ENEE =450 ==
— A = Azt 3 ;2 3 !
(6) 8() = 4z, Sl [I MEIEY A (2K?)?
3 2 l
BEIRCY.C R &
— —3 7 — =8 -;. v 3_5 __Ii
(7) 6(t)= A=, ’—A"[‘_zz'sz+41 (2 K2y
3-5-.7 & j
T 6! (2Kt} o Bk
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’2 ‘.4
— '/é._; sin (n2) ;! = :l’

0= Alogs, VAl e I
(9) 6(2) = Alog ¢, . Bl 51 T K 4!
2 &£ 2.3 ab
T el Tk T
n o 2t  at
(10) 0(r) = A, V=A"'[' +1{'2!+EQZT+“']'

Tt will be noticed that in these solutions I7=46(t) is the heat dis-
tribution when a1 -=o.

Solutions of the differential equation when 6(¢) =o correspond-
ing to several values of ¢(¢) are as follows:
111 0(2) = o,

(1) ¢(2) =4, A=¥I1]

@ 0=, v=a|w+ il

. , L, 2% AT
(3) #(1) = 47 V=4 I:u + gt SEKZ],
Y T h R 47
@9 =an V=an|et T~
3 &
T sgp gl ] '

1 at 3

- X
() dty=ars,  vedri|o— o T i

3°5 At
“k gt ]
R ot wt oAt
(6) ¢(1) = 1’1(‘"’, I7= Ae [J' =+ K 3' + A’;} 5. SF oc ] )
3

(7) ¢(t) =Asin(nz), V=41 [sin (nt)r + /:i cos (n?) 'f‘
J .

o b
— p2sin (n?) = -],
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-3

1
(8) ¢(t)y=Alogt, V=4 [.t log 7+, T

1 2P B A
TRESITERR T
It will be noticed that in this set of solutions | '=o0 when xr=—=o0.

Let w,=7f (2, 8), u,=7.(3, 1), u;=7,(s, 1) represent solutions
of the three one-dimensional Fourier's equations,

ov ol ) v v [‘,PzV
a~Rar a=Kg a=t o

respectively. It is readily proved that
F == wu, and "= 1,

are solutions respectively of the two-dimensional Fourier’s equation

or ,(52[/ 52[’)
=K +

ot @ aj?
and the three-dimensional Fourier's equation

o _ APV EV &
o =M ettt )

This shows how solutions of the two- and three-dimensional
Fourier's equations can be obtained from the solutions of the one-
dimensional equation.

For example, from the one-dimensional solutions

2
Ae 48t

7 2
v Kt

and V= Ae ™ sin (nx)

the three-dimensional solutions

A€—4;‘t
IV (1) V=
(2) V= Ae~@+B*y9R sin (ax) sin (By) sin (vs),

respectively, are obtained.
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If the solution of the three-dimensional Fourier's equation
oV ol (el s (o 4
Tor T (a"* o oz )
is a function of r and ¢ only, so that
V=7Ff(rt), where r = (a* + 1* 4 %)%,

the transformation of the given equation from rectangular to polar
coordinates shows that the solution is

V="
o

’

where » 1s a solution of the Fourier's equation

u Ou
= K E .
ot or*

It follows that solutions of the three-dimensional equation of the
form V' =f(r, t) are obtained by replacing . by # in any solution
of the one-dimensional equation

or Cu
— =K —
ot ox*?
and dividing the result by r.
In this manner are obtained the solutions

p
v (1) =5
e
) H=TRa
v /1 nr oo 2 1
(3) "= L ¢ sin (rer + 207 K2).

It is interesting to compare the solutions of Fourier's partial dif-
ferential equation obtained in this paper with the solutions tabulated
by Sir William Thomson in the mathematcal appendix of the article
on “Heat ™ in the “ Encyclopaedia Britannica,” ninth edition.

Sir William Thomson obtains his results by summation, that is
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by integration, from the solution IV (1) above. All his results
occur directly in the above tables or are combinations of two of these
solutions. It is evident that there are several misprints in the results
as printed in the “ Britannica.”

Of course there are many solutions of Fourier’s equation which
must be built up from elementary solutions, however found, by
means of Fourier series, or which must be obtained by the methods
of harmonic analysis.

The solution IIT (5) above is the series used by Sir William
Thomson in his solution of the problem of the secular cooling of the
carth.?

An interesting result in pure mathematics is obtained as follows:
Sir William Thomson shows that for a continued point source of
heat, if the rate is an arbitrary function of the time, f(t), the solu-
tion of Fourier's equation when K =1 is given by the definite
ntegral

—r?

V= f difit — 7)o,

4x
3.3°
I Ead

The second part of the general solution (B) above shows that

1|1 7 3

V=E[,,'f(’) +//@) Ly + 0+ ]

is also the solution of Fourier's equation for the same conditions.
It follows that

2

[asi= gom e[y O+ 7O L 0

is a general formula for computing the definite integral.

LenicH UNIVERSITY,
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